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Abstract: Genetic programming (GP) is presented as a technique to induce models that 
can be used with GIS data to map landslide-hazard zones. GP is a data-mining technique 
frequently used to solve engineering and scientific problems; in recent years it has been 
applied to several spatial questions. This paper describes attempts to optimize the GP sys-
tem, to evolve models that are then tested in different locations. GP map accuracy is eval-
uated by comparison to landslide-hazard maps of the same California locations created by 
the USGS (United States Geological Survey; Wentworth et al., 1997). GP maps are com-
pared to maps created using linear discriminant analysis (LDA). In three out of the four 
study sites, GP models produce more accurate hazard maps than the LDA process. The 
highest accuracy attained by GP models is 84% and by LDA is 69%. Map accuracies at the 
training site (Yountville and Capell Valley) are higher than at other locations, highlighting 
the need for care when choosing a training site. Inaccuracies could be caused by using 
data of too coarse spatial resolution or by differences in data-processing techniques of GP 
and the USGS, that is, individual cell versus a regional approach. [Key words: landslides, 
genetic programming, hazard zoning, California.]

INTRODUCTION

Landslides are globally the most costly of the natural hazards in terms of lives lost 
and damage to resources and property. Accurate landslide-hazard maps are needed 
to aid in decision making for future development and to prevent the types of cata-
strophic losses seen in recent years, for example in Central and South America. 
Automated mapping techniques can be used to provide an initial attempt at 
regional landslide-hazard zoning. The variety of research in this area reflects the 
importance and difficulty of this problem; zoning techniques have included inven-
tories, GIS procedures, and models.

Landslide-hazard maps are often created using a two-step method. First, inven-
tories are formulated of areas where landslides have occurred using extensive field 
reconnaissance and delineation of landslides from aerial photographs (Wieczorek, 
1984; Howes, 1987; Wentworth et al., 1997). Assessment of existing landslides can 
be confusing and subjective, particularly where multiple overlapping landslides 
have occurred or where there is substantial vegetative regrowth. The second step is 
to rate landslide hazard by spatial frequency of the landslides or some other criteria 
(Wentworth et al., 1997; Parise, 1999). Without further analysis, simple inventories 
provide little insight into causes or locations of future landslides except around 
known slides.
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Predictive models imply that explanatory factors are causative or at least associa-
tive. Such models can be based on factors such as slope, land use, and lithology. If 
explanatory factors in an area of interest are present or in a similar size range com-
parable to areas known to be susceptible to landslides, models may be able to pre-
dict landslide hazards in the area of interest. Such hazard-zoning models are 
relatively easy to implement with Geographic Information Systems (GIS). GIS have 
been used successfully in deterministic models such as weighted overlays of poly-
gons or raster layers depicting areas of physical homogeneity (Clouatre et al., 1996; 
van Westen et al., 1997; Nguyen, 2000) or empirically based equations (Sakellariou 
and Ferentinou, 2001). Physical or statistical methods combined with GIS for land-
slide-hazard zonation include multivariate regression and discriminant analysis 
(Carrara et al., 1991; Naranjo et al., 1994; Guzzetti et al., 1999, 2000; Dhakal et 
al., 2000; Gritzner et al., 2001; Dai and Lee, 2003).

Relationships between enhanced processing power, data availability, and model 
complexity are direct and circular. Increased processing power allows use of high 
resolution data such as remotely sensed data which can greatly enhance studies in 
areas that are difficult to access (Jordan et al., 2000; Nguyen, 2000). Mathematical 
and physical models have been developed in recent years that successfully take 
advantage of such advances through intuitive and appealing graphical user inter-
faces, and GIS. Sinmap and Shalstab models combine easy to use software inter-
faces with GIS data layers to allow calculation of a spatially explicit infinite slope 
model resulting in stability indices (Dietrich, 1998; Pack, 1998). However such 
models can still be hampered by lack of available and accurate data of appropriate 
resolution.

Other modeling or problem-solving techniques that have been applied to geo-
graphic problems use data mining or searching paradigms. Genetic programming 
(GP), explained in the next section of this paper, is one such method commonly 
used to explore data through an evolutionary algorithm. This study explores the use 
of GP to discover causative or associative factors most important to landslides and 
to induce a model for landslide-hazard zoning using readily available data. A haz-
ard map is also created using linear discriminant analysis and the same data. The 
hazard maps are compared, both quantitatively and qualitatively, to a landslide-
hazard map of the same area previously created by USGS (United States Geological 
Survey) scientists.

GENETIC PROGRAMMING

GP has been described as a searching, data mining, and optimization technique 
for analytical problem solving. Since Koza invented GP, it has become a widely 
used method for solving a variety of questions in science and engineering (Koza, 
1992, 1994). In a geographic setting, Whigham (2000) and McKay (2001) exam-
ined natural variability of marsupial populations using raster data. GP has also been 
used in image processing for classification and feature extraction (Daida, 1995, 
1996; Jan, 1997). An advantage of GP over similar methods is that model results are 
visible so that it is possible to determine which factors are used and to evaluate how 
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factors are used (Diplock, 1998). However, Turton et al. (1996) found that GP 
induced such complex models that they were hard to interpret.

GP is based on the Darwinian theory of evolution. The evolutionary aspect of GP 
stems from its iterative processing of generations of individual models. Each model 
is designed to solve a problem, in this case, to predict and map landslide-hazard 
zones.

A model can be represented by a tree structure with terminals being user-defined 
variables such as slope or lithology. Interior nodes of the tree represent user pro-
vided functions with which to combine the variables into a predictive model. The 
set of functions may include mathematical, conditional, and logical operators.

The first generation of models is created randomly from the variables and func-
tions, and is evaluated for fitness by comparison to a training set of data provided 
by the user. The fittest models are carried over into the next generation using ran-
domly assigned breeding operators: reproduction, crossover, and mutation. During 
reproduction, an exact replica of a model is copied to the next generation. The 
crossover operation involves an exchange of subtrees between two fit models (Fig. 
1). This operation is an exchange of genetic material and results in two new models 
within the next generation. Mutation causes replacement of a subtree of a randomly 
selected model.

Fig. 1. Crossover operation, (A) before and (B) after.
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GP iterates through several generations until it reaches a solution model of 100% 
accuracy or, more likely, it attains a certain number of generations or reaches a time 
limit. The result is then the fittest predictive model. More detailed explanations of 
GP are given in Koza (1992, 1994), Fogel (1999), and Langdon and Poli (2002).

LINEAR DISCRIMINANT ANALYSIS

LDA is a parametric maximum likelihood statistical procedure that classifies 
observations into one of n classes by using a training sample set to define a solution 
space for each class. Each dimension of the space corresponds to a different inde-
pendent variable. Test points are then classified into the class whose solution space 
centroid is closest to the point itself. Distances in this analysis are generally com-
puted using the Mahalanobis index:

where xi is the vector of independent variables for point I, xj is the mean vector for 
the jth class and S is the pooled covariance matrix (Marcoulides and Hershberger, 
1997).

STUDY SITES

Five 7.5-min. U.S. Geological Survey quadrangle map areas from the San 
Francisco Bay area of California were selected for use in this study based on data 
availability, physical diversity and susceptibility to landslides: Yountville, Capell 
Valley, Point Reyes NE, San Rafael, and Walnut Creek (Fig. 2). Yountville and Capell 
Valley are contiguous training areas and are considered as one site.

D2 χi χj–( )S 1– χi χj–( )=

Fig. 2. California study sites.
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The study sites are physically diverse. They provide a range of lithologies of sed-
imentary, igneous and metamorphic origin. Point Reyes NE and San Rafael are 
dominated by sandstone and shale. Yountville and Capell Valley are composed of 
mafic and some felsic volcanic rocks, serpentinite, sandstone/mudstone/shale, and 
surficial deposits from alluvial sources and landslides. Walnut Creek is typified by 
sandstone, conglomerate, mudstone, shale, and some surficial deposits 
(Wentworth, 1997). This variety of parent material ensures various soil types and 
therefore a wide range of soil physical properties. The study sites have varied terrain 
that includes the steeply sloping hills of the coastal ranges and flat alluvial valleys. 
The terrain suggests a range of landslide-hazard susceptibilties. Although there is a 
wide variety of slope angles, about one third of the terrain has slopes between 18–
35% with the mean slope for the areas ranging between 20% (Walnut Creek) to 
28% (San Rafael; Soil Conservation Service, 1977, 1985, 1978).

METHODS

This study compared two techniques for creating landslide-hazard maps, GP and 
LDA, against a USGS landslide-hazard map. The comparison was evaluated quan-
titatively using an overall accuracy percentage and the kappa statistic.

Data 

All of the GIS data layers for the study were downloaded from Internet sites dur-
ing 2000–2001. URLs are given in the Appendix. A GIS data layer of landslide-
hazard classes developed by USGS scientists was used to evaluate model accura-
cies (Wentworth et al., 1997). Landslide hazard was rated low (few to no landslides 
or presence of surficial deposits), medium (landslides greater than 455 m apart) or 
high (landslides closer than 455 m). Medium and high hazard classes were buffered 
by an unknown amount.

A list of factors important in the formation of landslides was gleaned from the 
literature (Howes, 1987; Tsukamoto and Minematsu, 1987; Ritter et al., 1995; 
Mantovani et al., 1996; California Department of Conservation, 1997; van Westen 
et al., 1997; Larsen and Torres-Sanchez, 1998; Pack et al., 1998). Based on this list, 
the following layers were found or derived: aspect, elevation, slope, slope curva-
ture, flow accumulation, soil physical properties (bulk density, rock depth, available 
water capacity, liquid limit, plasticity index, particle size), lithology, geologic age, 
land use/land cover (LULC), and distances to streams and roads. Using ArcInfo GIS 
software (ESRI), the data were standardized to UTM coordinates, zone 10, NAD 27 
datum, resampled to 30 m cells and clipped to the study site.

In order to use GP and LDA, the data were processed further into two subsets, a 
training set for model building and a model-testing set. The training set, from the 
Yountville and Capell Valley area, was a stratified random sample that for each of 
the three hazard ratings numbered 50% of the points within the smallest class of the 
hazard rating layer. This set totaled almost 70,000 points. Data were extracted from 
every raster layer, including the USGS hazard layer, at each of the points for use 
with GP and LDA. The testing data set comprised the remaining data set. This 
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included about 260,000 points from Yountville and Capell Valley, 63,000 from 
Point Reyes NE, 76,000 from San Rafael, and 48,000 from Walnut Creek. The dif-
ferent numbers of points for each area reflect the presence of water bodies or of no 
data values. Both GP and LDA were extremely sensitive to missing data values.

GP Methods

This study used Lilgp genetic programming software run on the Sun Solaris oper-
ating system (Punch, 1998). Eight unique combinations of independent variables 
and initial functions were evaluated using GP analysis (Table 1). Initially, each inde-
pendent variable was used in the GP analysis in its original units of measure. This 
approach seemed reasonable since, according to Koza (1992), GP is robust to dif-
ferent data units.

Using the premise that a model should begin simply and only increase in com-
plexity as necessary, the first GP configuration contained only four independent 
variables and two initial functions. This resulted in trivial solution models that iden-
tified only constant hazard ratings regardless of the values of the independent vari-
ables. In reaction to the trivia, the second GP configuration included 65 
independent variables and 14 initial functions. Initial functions included the math-
ematical, trigonometric, relational, and logarithmic functions. This “try everything” 
approach resulted in two findings. First, a size restriction on the trees resulting from 
the GP analysis is necessary to maintain relatively simple trees that can be inter-
preted and transcribed into the GIS programs to produce landslide hazard maps. As 
Turton et al. (1996) found, the complex models that can be produced by GP often 
gave no insight into the data or processes involved. The second approach resulted 
in a huge search space that was time consuming for the GP program to explore 
effectively and accuracies were very low (<40%).

In order to reduce the size of the search space, the function and data sets were 
reduced in size and the data sets were radically simplified. Of the large function set 
in configuration 2, only the addition, subtraction, multiplication, division and if/
then/else functions were retained and tested (Table 1). The land-use/land-cover 
layer had much lower spatial resolution than the remainder of the data (1:100,000 
scale and a minimum mapping unit of 12.5 ha) and contained unclear data catego-
ries, so it was dropped completely from the remainder of the analysis. Other layers 
were categorized into two values (1 or 0) depending upon the perception of their 
contribution to landslide hazard. For example, the aspect layer was simplified from 
a 0–360° scale by assigning 0 to values 0–180° and 1 to values 180–360°. This sim-
plification represented differences between windward and leeward hill slopes that 
might indicate differences in moisture content of the soil and vegetation cover. Two 
slope layers were created based on thresholds of 10° or 20° (Ellen et al., 1997; 
Wentworth et al., 1997). If there was no obvious threshold, a cutoff value was com-
puted by using the mean value for each independent variable. The resulting simpli-
fied data are described in Tables 2 and 3, and configurations 3–8 use data sets with 
8 or 27 of these variables (Table 1). Relative and absolute means were originally cal-
culated. That is, the absolute means were calculated from the Yountville-Capell 
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Table 1. Genetic Programming Run Configurationsa

Configuration

1 2 3 4 5 6 7 8

Function

+ + + + + + + +

- - - - - - - -

x x x

/ / /

1/x

sqrt

pow

trig

log

abcb cb cb

Variable

Aspect x x x x x x x

Elevation x x x x x x x x

Slope (10° or 20°) x x x x x x x x

Flow accumulation x x x x x x x x

Slope curvature x x x x x x x

Soil rock depth x x x x x x x x

Soil bulk density x x x x x x x

Soil water capacity x x x x

Soil liquid limit x x x x

Soil plasticity index x x x x

Soil particle sizes x x x x

Soil clay content x

Soil permeability x

Presence or absence of geologic formations (16) x

Geologic age x

Presence or absence of lithologic types (13) x x x x

Presence or absence of land-use or cover types 
(13) x

Distance to roads x x x x

Distance to streams x x x x

Constants: configuration 2 (1,2,3) and 
configurations 6–8 (1,0) x x x x

Ephemeral random constant x

aConfigurations 1 and 2 use raw data or presence/absence data; Configurations 3–8 use trans-
formed data or presence/absence data.
b”a” represents if...>...then...else; “b” represents if...<...then...else; “c” represents if...then...else.
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Valley data and the relative means were calculated from each study site. The results 
were so similar that they are not reported here (Litschert, 2002).

Linear Discriminant Analysis Methods

Linear discriminant analysis (LDA) using SAS (1999) was applied using the train-
ing data sets from Yountville and Capell Valley. These data sets consisted of 8 and 
27 variables, and 70,000 points: they were exactly the same as those data sets used 
to train the GP. The resulting models were then applied to all areas using the same 
8 and 27 variable testing data sets used in GP analysis.

Overall and Kappa Accuracies

The models produced by GP and LDA were used with the test data to create ras-
ter maps. The raster maps were compared cell by cell against the landslide-hazard 
maps created by the USGS. Overall percentage accuracy was calculated by divid-
ing the total number of correct cells by the total number of cells for each map. The 
kappa statistic was used to calculate a more telling accuracy percentage by using 
the numbers of incorrect cells in each predicted hazard class as well as correct cells 
(Jensen, 1996). Kappa of 100% indicates complete agreement between two hazard 
maps and 0% indicates no agreement beyond what would be expected by chance.

Table 2. Data Layer Simplification by Threshold Value

Original data
Original 

range Simple range Rationale for selected cutoff

Aspect 0–360° 0 = 0–180°,
1 = 180–360°

Given prevailing winds, leeward slope = 1 and 
windward slope = 0.

Slope 10° 0–56° 0 = 0–10°,
1 > 10°

Because of the complexity of the landslide 
process, a threshold value to indicate slope 
cutoff could not be picked with absolute 
accuracy. We used two values from the 
documentation of the USGS hazard layer: 20° 
(Ellen, 1997) and 10° (Wentworth, 1997).

Slope 20° 0–56° 0 = 0–20°,
1 > 20°

Because of the complexity of the landslide 
process, a threshold value to indicate slope 
cutoff could not be picked with absolute 
accuracy. We used two values from the 
documentation of the USGS hazard layer: 20° 
(Ellen, 1997) and 10° (Wentworth, 1997).

Slope curvature -1.1–0.8 0 < 0,
1 > 0

Negative values indicate upwardly concave 
surface; positive values indicate upwardly 
convex surface. Not used outside of 
Yountville and Capell Valley.

Presence or absence of 
lithologic types (13)

n.a. n.a.

Constants: 1 and 0 n.a. n.a.
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RESULTS AND DISCUSSION

Training and Testing GP at Yountville and Capell Valley

In seeking to optimize the use of GP, it was important to find a workable choice 
of inputs, including functions and cartographic variables, in order to evolve appro-
priate models. Of the first two configurations shown in Table 1, the first was too 
small and produced trivial results; and the second configuration was too large and 
unwieldy for GP to search and to discover useful models. Configurations 3–8, using 
the simplified inputs, produced better initial results so they were tested more rigor-
ously and results are reported here.

The GP procedure was trained on the Yountville and Capell Valley site using data 
sets of both 8 and 27 variables with three different combinations of functions (Table 
1). The six GP configurations were each run 10 times to 20 generations, resulting in 
60 hazard models. The models were then tested by creating landslide hazard maps 
using the remaining data sets of 8 and 27 variables for the same location. Models 
and maps were scored for accuracy by comparison to the USGS hazard layer and 
the accuracies are shown in Table 4. The highest test accuracy was 80.7% which 
was attained using the larger data set with two different function sets: {+, -} and {+, 
-, *, /}. It was apparent from the success of the larger data set that more rather than 
fewer variables were needed to capture the variability inherent in the landscape in 
order to predict landslide hazard.

Many of the initial GP runs did not evolve to their highest fitness levels until they 
reached their 20th generation; these configurations were rerun to 60 generations to 
test whether this would improve model accuracies (Table 5). The 60 generation runs 
produced the highest test accuracy of 83.7% using the 27 variable data set and the 
function set {+, -,*,/}. Figure 3 shows the tree structure of the model that scored the 
highest accuracy. Lithx are lithology data layers (see Table 6 for a description); sl20 
is the slope layer where 20 was selected as the data threshold; awc is soil available 
water capacity; flowacc is flow accumulation, a measure of topographic conver-
gence; and LL is the soil liquid limit. The accuracy of this model was only a 3% 
improvement over the best accuracy obtained from the 20 generation runs. It is 
debatable whether increasing the number of generations further would have pro-
duced any substantial improvement beyond this 3% since most of the GP runs 
attained their maximum accuracy before the 60 generation limit was reached (Table 
5). Accuracy may have been improved by an increase in the size of each genera-
tion; however it was decided not to pursue this since there were already exact rep-
licas of some trees despite different initial generations. In addition to input choices 
and number of generations, there are several other parameters that the user can vary 
to improve the performance of GP including tree size, generation size, number of 
runs, and probability of each breeding operation as described in the section entitled 
Genetic Programming.
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Table 4. Genetic Programming Run Results for 20 Generations

Run

8-variable data set 27-variable data set

Training 
accuracy

Test 
accuracy

Generation 
of best 

algorithm
Training 
accuracy

Test 
accuracy

Generation 
of best 

algorithm
Function set +, -

1 65.34 23.6 8 79.03 64.6 18
2 65.34 23.6 11 75.01 49.4 20
3 65.20 42.4 7 77.81 49.1 20
4 65.15 36.9 4 77.23 56.2 20
5 65.15 36.9 2 77.89 80.7 15
6 65.22 36.6 7 76.94 54.8 14
7 65.22 36.6 10 79.39 57.7 20
8 65.22 36.6 9 78.89 73.9 19
9 65.20 26.0 2 78.30 63.4 20
10 65.34 23.6 10 79.68 77.9 19

Highest 65.34 42.4 79.68 80.7
Average 65.24 32.3 78.02 62.8
Lowest 65.15 23.6 75.01 49.1

Function set +, -, *, /
1 69.74 23.3 20 79.68 78.3 17
2 69.37 64.6 19 80.08 44.9 20
3 68.80 28.3 19 79.88 34.2 20
4 68.49 39.1 20 79.12 21.5 20
5 68.96 55.7 17 79.66 80.1 20
6 68.30 33.5 20 79.63 68.0 19
7 68.94 8.3 20 77.89 80.7 14
8 68.34 45.8 16 80.73 57.3 20
9 68.47 49.8 17 80.71 22.9 20
10 68.52 38.1 14 81.10 68.0 20

Highest 69.74 64.6 81.10 80.7
Average 68.79 38.7 79.85 55.6
Lowest 68.30 8.3 77.89 21.5

Function set +, -, if
1 65.21 9.1 20 76.52 35.9 15
2 65.20 34.4 4 77.68 8.9 18
3 65.34 30.5 2 78.01 22.3 20
4 65.38 18.3 14 77.81 53.6 13
5 65.34 22.5 20 77.20 53.1 17
6 65.34 26.4 7 78.00 52.5 20
7 65.15 30.5 3 77.29 22.3 20
8 65.15 27.3 3 79.68 75.5 17
9 65.15 44.8 3 77.89 37.3 16
10 65.15 34.9 3 77.89 30.7 20

Highest 65.38 44.8 79.68 75.5
Average 65.24 27.9 77.80 39.2
Lowest 65.15 9.1 76.52 8.9
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Testing GP at Other Locations

The 14 models that scored the highest accuracies in Yountville and Capell Valley 
were selected from the 20 and 60 generation GP runs. It is possible that using mod-
els with the highest testing accuracies may have biased results toward GP (Dr. 
Charles Anderson, professor of computer science, Colorado State University, pers. 
comm., February 2002). However, in this case several of these models also had high 

Table 5. Genetic Programming Run Results for 60 Generations

Run

8-variable data set 27-variable data set

Training 
accuracy

Test 
accuracy

Generation 
of best 

algorithm
Training 
accuracy

Test 
accuracy

Generation 
of best 

algorithm

Function set +, -a

1 79.68 77.9 25

2 79.68 27.7 49

3 78.00 80.7 29

4 79.68 77.9 27

5 78.00 80.7 21

6 78.97 56.1 41

7 79.68 77.9 34

8 79.68 77.9 24

9 79.68 77.9 36

10 79.68 77.9 19

Highest 79.68 80.7

Average 79.28 71.3

Lowest 78.00 27.7

Function set +, -, *, /

1 69.74 31.7 20 79.92 27.7 50

2 69.75 25.9 49 82.46 8.2 54

3 70.38 33.2 59 83.33 8.2 57

4 69.37 38.3 56 80.71 19.3 59

5 69.39 61.0 29 81.04 59.0 55

6 68.87 30.8 58 80.40 68.4 59

7 70.33 31.1 55 81.01 69.8 47

8 70.23 33.1 50 83.29 23.5 58

9 70.69 63.5 58 82.71 83.7 59

10 68.56 21.3 52 83.27 12.7 60

Highest 70.69 63.5 83.33 83.7

Average 69.73 37.0 81.81 38.1

Lowest 68.56 21.3 79.92 8.2
aThis set was not run at 60 generations because it attained highest scores before 20 
generations.
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Table 6. Independent Variables in the Genetic Programing Best 14 Models

Independent variable
Number 
of uses Lithxa

Yountville/
Capell 
Valley

Point 
Reyes NE San Rafael

Walnut 
Creek

Sand, gravel, silt, and mudb 17 8 11.6% 3.0% 5.2% 3.6%

Clay, silt, sand, gravelb 16 2 2.2% 0.3% 1.7% 5.8%

Landslide depositsb 16 4 4.0% 0.0% 2.1% 0.0%

Low-grade metasandstone 
and shaleb 14 7 5.7% 9.1% 10.5% 0.0%

Serpentiniteb 14 11 6.1% 0.4% 2.9% 0.0%

Mudstone and shale, some 
sandstoneb 12 5 9.2% 0.0% 0.0% 13.1%

Sandstone and conglomerate, 
some mudstone or shaleb 11 12 0.2% 7.4% 0.0% 17.4%

Slope 10° or 20°c 8 23.7% 26.2% 27.6% 20.4%

Depth to bedrock (in)c 5 20.5 32.4 22.1 26.0

Elevation (m)c 5 316.5 141.7 158.3 165.0

Sheared sandstone and shale 
(melange)b 4 6 0.5% 79.5% 76.8% 0.0%

Liquid limit index 4 26.3 18.8 14.8 38.3

Tuff, tuffaceous sandstone, 
some sandstone, volcanic 
rockb 3 13 1.5% 0.0% 0.0% 0.0%

Flow accumulation (cells)c 3 578 20 32 93

Mafic volcanicb 2 1 29.4% 0.0% 0.0% 0.0%

Aspect (°)c 2 169.0 179 164 165.0

Soil bulk density (g cm-3)c 2 1.39 0.68 0.64 1.40

Available water capacity (cm 
cm-1 horizon) 2 0.13 0.07 0.06 0.16

Felsic volcanicb 1 3 2.2% 0.0% 0.0% 0.0%

Sandstone or mudstone or 
shaleb 1 27.3% 0.0% 0.0% 58.8%

Plasticity index 1 8.70 8.09 5.08 18.70

Porcelaneous or siliceous 
mudstone and shale; chertb 0 9 0.1% 0.3% 0.9% 1.4%

Slope curvaturec 0 -0.0001 -0.1960 0.0076 -0.1660

Distance to roads (m) 0 286.0 not used

Distance to streams (m) 0 422.0 not used

Particle size (no. 4 sieve) 0 74.1% not used
aLithx numbers denote variable names used in Figure 3.
bLithologic values are % data area. Other values are means of data set.
cDesignates one of the eight terminals in the small data set.
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training accuracies and would have been chosen for further testing under this differ-
ent criterion.

The 14 best models were applied to the other three study sites, Point Reyes NE, 
San Rafael and Walnut Creek, to see if the models would be accurate at other loca-
tions. The GP models using the larger data set score highest at Walnut Creek (max-
imum = 74%, mean = 63%), and lowest in Point Reyes NE (maximum = 44%, 
mean = 38%; Fig. 4). The physical characteristics of Walnut Creek are quite similar 
to Yountville and Capell Valley, but Walnut Creek also had the lowest number of 

Fig. 3. Tree representing highest scoring genetic programming model (84%).

Fig. 4. Accuracy comparison for genetic programming (GP) and linear discriminant analysis (LDA).
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data points, which may have biased results in favor of this area (Table 6). The higher 
scores at Yountville and Capell Valley probably indicate the importance of local 
training of the models. All but one of the models uses the larger data set, indicating 
that the smaller data set may not be adequate to characterize landslide hazard in 
these areas.

The models were complex and not obvious as representations of the physical 
reality or as representations of a logical, hazard-rating process. However, some 
parts of the models are clear, for example the subtraction of the “sand, gravel, silt 
and mud” variable. This variable would have the value of one in low slope areas 
that encouraged deposition and would probably not be prone to landslides. Sub-
traction of this variable in a model would cause the hazard rating to decrease 
appropriately if the variable is present (i.e., value = 1) or have no effect if the vari-
able is absent (i.e., value = 0).

Table 6 shows the number of times each independent variable was used in the 
GPs14 best models and the area at the site occupied by each variable. The table 
demonstrates how GP discovered the importance of some of the lithological vari-
ables by the large number of times that they are used. The two variables “clay, silt, 
sand, gravel” and “sand, gravel, silt, mud” are used the most frequently. These vari-
ables define locations of alluvial deposits and are typically found in areas of low 
slope with little potential for landslide hazard. Such variables were used to define 
partly the low landslide hazard class on the USGS map.

Further examination of Table 6 reveals an interesting lack of use by GP of some 
layers. The two slope layers were only used in seven out of the 14 best models: sim-
ilarly, the soil physical properties were rarely used. At least two possibilities exist 
here. The data simplifications performed on each layer may have used inappropri-
ate threshold values. Secondly, as Gritzner et al. (2001) also suggested, the resolu-
tion of the spatial data at 30 m cell size may have been too coarse, resulting in 
reduced variability of data values.

Comparison of GP and LDA

GP performs better than LDA at all locations except Point Reyes NE where the 
accuracies are also the closest: the LDA result for Point Reyes NE is 46% compared 
to a GP accuracy of 44% (Fig. 4). Point Reyes seems to be an anomaly. It is the only 
site where (1) the small dataset scored higher than the large dataset (using LDA by 
12%) and (2) LDA scored higher than GP (by 2%). As mentioned earlier, Point Reyes 
has quite different physical characteristics from the other study sites. Whereas these 
differences do not necessarily explain these accuracy scores, they might be a con-
tributing factor.

LDA scores for the large data set reflect a similar pattern to GP models, with 
Yountville and Capell Valley scoring the highest (69%) and Point Reyes NE scoring 
the lowest (34%) (Fig. 4). LDA results for the smaller data set are confusing since 
Point Reyes NE is the highest at 46% and Yountville and Capell Valley is the lowest 
at 37%. The low scores, which are not much higher than what might be expected 
from a random classification of the landscape, may indicate, as with the GP results, 
that the smaller data set was inadequate for landslide-hazard zoning.
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Lower LDA scores might be attributed to the unfulfilled needs of LDA. LDA 
requires data to be normally distributed: similar to many geographic data, the data 
layers used in this study did not have normal distributions. LDA may require data to 
be in their usual wider physical range of values in order to classify data points dis-
tinctly and not be simplified to only two values.

Kappa Statistic of Yountville and Capell Valley

The kappa statistic was run for the best GP and LDA overall results at Yountville 
and Capell Valley. Error matrices are shown in Table 7: as expected GP (53%) per-
formed better than LDA (42%). It was apparent from the error matrices that the low 
hazard class was more distinct than the medium and high classes. This was proba-
bly partly due to the use of data layers describing surficial deposits to outline the 
low hazard class. Medium and high hazard classes were delineated using an 
entirely different process: actual landslide polygons were buffered and rated 
depending on proximity. Both LDA and GP examined physical data layers on an 
individual cell basis, so it was unlikely that these techniques could determine any 
such spatial relationships. Given the different ways of tackling this issue, it was not 
surprising that neither GP nor LDA attained close to 100% accuracy when com-
pared to the USGS hazard layer.

Qualitative Comparison of GP and LDA at Yountville and Capell Valley

Best GP, best LDA, and USGS hazard layers for Yountville and Capell Valley are 
shown in Figure 5. Both GP and LDA mapped the low hazard class well, 

Table 7. Error matrices for best Genetic Programming (GP) and Linear 
Discriminant Analysis (LDA)

Functions: +, -,*, /, 
Generations: 60 Low Medium High Row total Omission Producer

GP: 27-variable data set

Low 17,715 14 3,502 21,231 3,516 83.4%

Medium 3,674 188,116 11,150 202,940 14,824 92.7%

High 274 23,859 12,012 36,145 24,133 33.2%

Column total 21,663 211,989 26,664 260,316

Commission 3,948 23,873 14,652 Overall = 83.7%

User 81.78% 88.74% 45.05% Kappa = 52.6%

LDA: 27-variable data set

Low 21,216 118 1 21,335 119 99.4%

Medium 8 128,919 6,811 135,738 6,819 95.0%

High 7 73,903 29,333 103,243 73,910 28.4%

Column total 21,231 202,940 36,145 260,316

Commission 15 74,021 6,812 Overall = 68.9%

User 99.93% 63.53% 81.15% Kappa = 41.6%
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Fig. 5. Hazard maps for Yountville and Capell Valley. Speckled appearance is a result of absence of 
training data.
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particularly in Napa Valley that dominates the west side of Yountville and Capell 
Valley. GP delineates quite accurately the medium hazard class throughout the cen-
tral and east sides whereas on the LDA map the high hazard class erroneously dom-
inates the eastern and northern portions.

CONCLUSION

This study has described the comparison of landslide hazard maps created using 
GP and LDA to a USGS hazard map. GP proved eventually to be a very flexible tool 
but it required a large effort initially to hone it for this study. Eventually GP was 
moderately successful, attaining at best 84% accuracy and performing better than 
LDA 3 out of 4 times. The larger data sets were required to capture more landscape 
variability to produce more accurate models. For this study, local training data and 
similarity of study sites proved to be important factors in model accuracy. Despite 
the proximity of Point Reyes NE to the Yountville and Capell Valley training sites, 
the Point Reyes NE maps showed the lowest accuracy when compared the USGS 
hazard maps.

Possibilities are available to increase GP performance further, for example by 
reducing sensitivity to areas of no data; by extracting data from surrounding cells 
where appropriate to the application; or by using data of finer spatial resolution. 
With further work, GP may be a useful technique to create preliminary landslide 
hazard maps at the regional scale that can then be refined as necessary by more 
detailed site specific work.
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APPENDIX

Data URLs (Accessed September 2000–March 2001)

Napa County Soil Survey: http://www.ca.nrcs.usda.gov/mlra/NapaSS/napass.html

Other Soils—Contra Costa, Marin Counties: http://www.statlab.iastate.edu/soils/nssc/

Land Use: http://www.consrv.ca.gov/dlrp/fmmp

DEMs (digital elevation models): http://bard.wr.usgs.gov/

DLGs (digital line graphs): http://www.usgs.gov/

Geology: http://wrgis.wr.usgs.gov/open-file/of97-744

Landslides: http://bard.wr.usgs.gov/
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